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Abstract—In this paper, a statistical model for the coupling of
electromagnetic radiation into enclosures through apertures is pre-
sented. The model gives a unified picture bridging deterministic
theories of aperture radiation, and statistical models necessary for
capturing the properties of irregular shaped enclosures. A Monte
Carlo technique based on random matrix theory is used to predict
and study the power transmitted through the aperture into the
enclosure. Universal behavior of the net power entering the aper-
ture is found. Results are of interest for predicting the coupling
of external radiation through openings in irregular enclosures and
reverberation chambers.

Index Terms—Admittance matrix, aperture coupling, cavities,
chaos, reverberation chamber (RC), statistical electromagnetics.

I. INTRODUCTION

THE coupling of electromagnetic (EM) radiation into enclo-
sures or cavities through apertures both electrically small

[1] and large [2] has attracted the interest of the EM community
for many years [3], [4]. Full solutions of this problem are par-
ticularly complicated because of the mathematical complexity
in the solution of the boundary-value problem and because of
the sensitivity of the solution to the detail of the enclosure’s di-
mensions, content, and the frequency spectrum of the excitation.
These difficulties have motivated the formulation of a statisti-
cal description, known as the random coupling model (RCM)
[5]–[7], of the excitation of cavities. The model predicts the
properties of the linear relation between voltages and currents
at ports in the cavity, when the ports are treated as electrically
small antennas.

In this paper, we formulate and investigate the RCM as it
applies to cases in which the ports are apertures in cavity walls.
The aperture is assumed to be illuminated on one side by a plane
EM wave. We then distinguish between the radiation problem,
where the aperture radiates into free space, and the cavity prob-
lem, where the aperture radiates into a closed EM environment.
The solution of the problem in the cavity case is then given in
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terms of the free-space solution and a fluctuation matrix based
on random matrix theory (RMT). Thus, there is a clear sepa-
ration between the system specific aspects of the aperture, in
terms of the radiation admittance, and the cavity in terms of the
fluctuation matrix.

We illustrate our method by focusing on the problem of an
electrically narrow aperture, for which the radiation admittance
can be easily calculated numerically. We then generalize our
result to the interesting case, where a resonant mode of the
aperture is excited. In this case, the statistical properties of the
aperture-cavity system can be given in a general universal form.

Our results build on previous work on apertures. In particular,
rectangular apertures have a very long research tradition in EM
theory [3], and continue to be a topic of interest [8]. The first
self-consistent treatments have been carried out by Bethe [1],
Bouwkamp [9], and, later, by Schwinger in aperture scattering
[10], and Roberts [11]. Subsequent work on apertures is due to
Ishimaru [12], Cockrell [13], Harrington [2], [3], [14], [15], and
Ramat-Sahmii [4], [16], among other investigators.

Our results are of interest for the physical characterization of
the radiation coupled into complex cavities such as reverberation
chambers (RC)—which is known to be an extremely compli-
cated problem even challenging classical electromagnetic com-
patibility (EMC) techniques [17]–[19]—for understanding in-
terference in metallic enclosures, as well as for modeling and
predicting radiated emissions in complicated environments.

This paper is organized as follows. In Section II, we intro-
duce the general model for the cavity-backed aperture, and we
describe the way the RCM models the cavity. In Section III, we
apply the formulation of Section II to large aspect ratio, rectan-
gular apertures; evaluating the elements of the admittance matrix
and computing the power entering a cavity with a rectangular
aperture. In this section, we also develop a simple formula for
the power entering a low-loss cavity with isolated resonances.
Section IV describes an extension of the model that accounts
for the coupling of power through an aperture, into a cavity, and
to an antenna in the cavity. Simple formulas for the high-loss
case, low-loss, isolated resonance are developed.

II. RANDOM COUPLING MODEL FOR APERTURES

The random coupling model was originally formulated to
model the impedance matrix of quasi-2D cavities with single
[5], and multiple [6] point-like ports [7]. In this section, we
develop the model for three-dimensional (3-D) irregular en-
closures excited through apertures [20]. As depicted in Fig. 1,
we consider a cavity with a planar aperture in its wall through
which our complex EM system is accessed from the outside.
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Fig. 1. Geometry of a complex 3-D cavity with volume V cav, boundary ∂V cav,
exhibiting wave-chaotic ray trajectories in the semiclassical limit: energy enters
the cavity through an electrically large aperture ∂V ap. Also shown is a point-like
port to be considered in Section IV.

The size and shape of the aperture are important in our model;
their specification constitutes “system specific” information that
is needed to implement the model. The cavity that we consider
in our studies is an electrically large enclosure with an irreg-
ular geometry. The irregularity is assumed to be such that ray
trajectories within the cavity are chaotic throughout [21]. Gen-
erally speaking, typical cavities have this feature; particularly,
those with curved walls and/or with contents that scatter ra-
diation in multiple directions. The consequences of assuming
trajectories are chaotic is that the spectra of modes of the cavity
have universal statistical properties that are modeled by RMT
[22]. Experiments have been carried out to test the predictions
of RCM for quasi-two-dimensional (2-D) complex enclosures
coupled through electrically small (point-like) ports [23]–[25].
Experiments have also been carried out in 3-D enclosures, and
with electrically large ports [26], [27].

When apertures are considered, the port approximation in-
voked in the original derivation of the RCM is no longer valid,
hence we need to consider the field distribution on the aperture
surface. We consider a planar aperture, i.e., one that is not sub-
ject to boundary curvature. This is consistent with real-world
situations such as 3-D RCs [28], where the aperture is generally
in a planar boundary. We henceforth assume that ε = ε0 , μ = μ0
in all nonconducting regions of space.

We first treat the aperture as if it existed in a metal plate
separating two infinite half-spaces. We refer to this as the “free-
space” situation or “radiation” case. Suppose the port is treated
as an aperture in a planar conductor whose surface normal n̂ is
parallel to the z-axis. The components of the fields transverse to
z in the aperture can be expressed as a superposition of modes
(an example is the set of modes of a waveguide with the same
cross-sectional shape as the aperture)

Et =
∑

s

Vses (x⊥) (1)

and

Ht =
∑

s

Is n̂ × es (x⊥) (2)

where es is the basis mode, (having only transverse fields)
normalized such that

∫
d2x⊥ |es |2 = Ns and n̂ is the normal,

which we take to be in the z-direction. In the radiation case, we
solve Maxwell’s equations in the half-space z > 0 subject to the
boundary conditions that Et = 0 on the conducting plane except
at the aperture, where it is given by (1). We do this by removing
the conducting plane, adding a magnetic surface current density
2δ (z) n̂ × Et to Faraday’s law, and solving Maxwell’s equa-
tions in the whole space −∞ < z < ∞ in the Fourier domain.
For this problem, the transverse components of the electric field
are odd functions of z with a jump equal to twice (1) at the loca-
tion of the aperture; thus satisfying the boundary condition for
the half-space problem. We then evaluate the transverse compo-
nents of the magnetic field on the plane z = 0, and project them
on to the basis n̂ × es (x⊥) at the aperture to find the magnetic
field amplitudes Is in (2). The result is a matrix relation between
the magnetic field amplitudes and the electric field amplitudes
in the aperture

Is =
∑

s ′

Y rad
ss ′ (k0) Vs ′ (3)

where k0 = ω/c, ω is the frequency of excitation and we have
adopted the phasor convention exp (−iωt). Here, the radiation
admittance matrix Y rad

ss ′ is determined from the Fourier trans-
form solution for the fields, and is given in terms of a 3-D
integral over wave numbers

Y rad
ss ′ (k0) =

√
μ

ε

∫
d3k

(2π)3
2ik0

k2
0 − k2 ẽ∗s · Δ

= Y r a d
· ẽs ′ (4)

where the dyadic tensor

Δ
= Y r a d

=
k⊥k⊥
k2
⊥

+

(
k2 − k2

⊥
k2 +

(
k2

0 − k2
)
k2
⊥

k2k2
0

)

(k × n̂) (k × n̂)
k2
⊥

(5)

is responsible for coupling two arbitrary modes of the aperture,
and

ẽs =
∫

aperture
d2x⊥ exp (−ik⊥ · x⊥) es (6)

is the Fourier transform of the aperture mode. The elements of
the radiation admittance are complex quantities. The residue at
the pole k = k0 in (4) gives the radiation conductance

Grad
ss ′ (k0) =

√
ε

μ

∫
k2

0dΩk

8π2 ẽ∗s · Δ
= G r a d

· ẽs ′ (7)

where Ωk is the 2-D solid angle of the wave vector k to be
integrated over 4π, and where there appears a modified dyadic
tensor

Δ
= G r a d

=
[
(k⊥k⊥) /k2

⊥
]
+
[
(k × n̂) (k × n̂) /k2

⊥
]

. (8)

The radiation conductance is frequency dependent through k0 .
We note that there is an implicit k0 dependence through the
Fourier transforms of the aperture modes, and we set |k| = k0
in (6) and (8). The remaining part of (4) gives the radiation



GRADONI et al.: STATISTICAL MODEL FOR THE EXCITATION OF CAVITIES THROUGH APERTURES 1051

susceptance. Part of this can be expressed as a principle part
integral of the radiation conductance. However, there is an ad-
ditional inductive contribution (Y ∝ k−1

0 ) (which we term the
magnetostatic conductance) coming from the last term in the
parentheses in (5) that contains a factor that cancels the reso-
nant denominator in (4). The reactive response of the aperture
can be expressed in terms of the Cauchy principal value of the
radiation conductance (4), and the previously mentioned induc-
tive contribution, yielding

Brad
ss ′ (k0) = P

∫ ∞

0

2k0dk

π (k2
0 − k2)

Grad
ss ′ (k) + Bms

ss ′ (9)

where Bms
ss ′ stands for magnetostatic conductance, defined as

Bms
ss ′ (k0) =

2
k0

√
ε

μ

∫
dk3

(2π)3 ẽ∗s · Δ
= B ms

· ẽs ′ (10)

and where Δ
=

B ms = [(k × n̂) (k × n̂)] /k2 .

We now repeat the process, but assume that the aperture opens
into a cavity rather than an infinite half-space, the radiation ad-
mittance (4) will be replaced by a cavity admittance. In the
appendix, it is shown that under the assumptions that the eigen-
modes of the closed cavity can be replaced by superpositions
of random plane waves (Berry’s hypothesis [29], [30]), and the
spectrum of the cavity eigenmodes can be replaced by one cor-
responding to a random matrix from the Gaussian Orthogonal
Ensemble (GOE) [22], the statistical properties of the cavity
admittance can be represented as

Y
=

cav = iB
=

rad +
[
G
=

rad
]1/2

· ξ
=
·
[
G
=

rad
]1/2

(11)

and the matrix ξ
=

is a universal fluctuation matrix defined as

ξ
=

=
i

π

∑

n

ΦnΦT
n

K0 −Kn + iα
(12)

where Kn is a set of eigenvalues of a random matrix drawn
from the GOE [22]. These matrices have positive and negative
eigenvalues that fall in a symmetric range about zero. The mean
spacing of the eigenvalues near zero can be adjusted by scaling
the size of the matrix elements. Here we assume that this has
been done such that the mean spacing of the Kn near zero is
unity. The quantity K0 represents the deviation of the excitation
frequency ω0 from some reference value ωref placed in the band
of interest

K0 =
ω0 − ωref

Δω
(13)

where Δω is the mean spacing between the resonant frequencies
of modes of the actual cavity in the range of ωref . The resonant
frequencies of a particular realization are, thus, given by ωn =
ωref + ΔωKn . The vector Φn is composed of independent, zero
mean, unit variance Gaussian random variables. The quantity
α describes the average loss in the cavity and is related to the
finesse parameterF , widely used in optical cavities and photonic
lattices [31]

α = F−1 =
ω0

2QΔω
. (14)

Fig. 2. Geometry of a 2-D regular (narrow) aperture illuminated by an external
plane wave, radiating in free space.

Thus, according to the RCM, two quantities are required to
specify the properties of the cavity: the Q width ω0/Q and the
mean spacing Δω between nearest neighbor resonances (cavity
modes).

The quantity α determines whether the cavity is in the high-
loss (α > 1) or low-loss (α < 1) regime. More precisely, it
establishes how much the individual resonances overlap. Ba-
sically, if α > 1 the Q-width of a resonance ω0/Q exceeds the
spacing between resonances Δω. A feature of chaotic cavities
is that each mode in a given frequency band has essentially the
same Q width. This is a consequence of the ergodic nature of the
ray trajectories that underlie the mode structure. Each mode has
wave energy distributed throughout the cavity such that losses
are approximately the same for each mode.

We now describe how relations (3) and (11) are used to deter-
mine the coupling of our system to external radiation. Specifi-
cally, we consider the framework of Fig. 2, where the aperture
is illuminated by a plane wave incident with a wave vector
kinc and polarization of magnetic field hinc that is perpendic-
ular to kinc. We again consider the aperture to be an opening
in a conducting plane at z = 0, with radiation incident from
z = −∞. We imagine writing the fields for z < 0 as the sum
of the incident wave, the wave that would be specularly re-
flected from an infinite planar surface, and a set of outgoing
waves associated with the presence of the aperture. The inci-
dent and specularly reflected waves combine to produce zero
tangential electric field on the plane z = 0. Thus, the outgoing
waves for z < 0 associated with the aperture can be expressed
in terms of the electric fields in the aperture just as the outgoing
waves for z > 0 can, the two cases being mirror images. So,
relation (1) continues to represent the tangential electric fields
in the plane z = 0. For the magnetic field, we have separate
expansions for z > 0 and z < 0. The electric field amplitudes
are then determined by the condition that the magnetic fields
are continuous in the aperture at z = 0. For z = 0+, we have
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H>
t =

∑
s I>

s n̂ × es (x⊥), with I> = Y
=

> · V , where Y
=

> is ei-

ther the radiation admittance matrix (4) or the cavity admittance
matrix (11) depending on the circumstance. For z = 0−, we
have H<

t =
∑

s I<
s n̂ × es (x⊥) + 2hinc exp [ikinc · x⊥], where

I< = −Y
=

rad · V (the minus sign accounts for the mirror sym-

metry) and the factor of two multiplying the incident field comes
from the addition of the incident and specularly reflected mag-
netic fields. Projecting the two magnetic field expressions on
the aperture basis, and equating the amplitudes gives

(
Y
=

> + Y
=

rad

)
· V = 2I inc (15)

where

I inc
s = −n̂ · ẽs (−kinc

⊥ ) × hinc (16)

and ẽs is the Fourier transform of the aperture electric field and
is defined in (6). Equation (15) can be inverted to find the vector
of voltages

V =
(

Y
=

rad + Y
=

>

)−1

· 2I inc (17)

and then the net power passing through the aperture is given by

Pt =
1
2
�
(

V ∗ · Y
=

> · V
)

(18)

where Y
=

> can be either a radiation (free-space) admittance (4)

or a cavity admittance matrix (11).

III. RECTANGULAR APERTURES

We consider rectangular apertures and select a basis for rep-
resentation of the tangential fields in the aperture in (1) and (2).
One choice for the basis is the modes of a waveguide with a
rectangular cross section. These can be written either as a sum
of TE and TM modes, or simply as a Fourier representation of
the individual Cartesian field components [32], [33].

In EMC studies, narrow apertures are often considered, as
they frequently occur in practical EM scenarios. The aperture
of Fig. 2 is elongated and thin: it has only one electrically
large dimension, and the field component e(n,0)(x) ≈ 0, with
s = (n, 0). Hence, in the particular case of a rectangular aperture
with L ∼ λ 
 W and W → 0, the field will be dominated by
TEn0 modes

es ≈ sin [kn (x + L/2)]
N

ŷ (19)

for |y| < W/2, where N =
√

2/LW . Once the aperture field
basis is specified, the procedure for calculating the cavity ad-
mittance matrix (4) is given by the following steps [34]: first,
calculate the Fourier transform ẽs (6); second, use ẽs to cal-
culate the radiation conductance (7); third, use ẽs to calculate
the magnetostatic susceptance (10); and fourth, use the afore-
said quantities to form the radiation susceptance Grad

ss ′ + iBrad
ss ′ .

Finally, use the so-formed radiation admittance to generate the
cavity admittance (11), similar to [6], [35]. The conductance and
susceptance have the property that off-diagonal terms vanish if
n is odd and n

′
is even, and vice versa, due to the even and

Fig. 3. Diagonal radiation conductance for n = 1, . . . , 5, for a narrow aper-
ture L = 25 cm × W = 2 cm. In the inset: low-frequency (cutoff) detail of the
diagonal elements with an off-diagonal element.

Fig. 4. Closeup of the diagonal radiation conductance in Fig. 3: low-frequency
(cutoff) detail of the diagonal elements with an off-diagonal element (dashed
line). The mode index n increases from left to right as indicated in Fig. 3.

odd parity in x of the basis modes. Further, in the limit of high
frequency, k0 
 kn , the components Gnn ′ have the limits

Grad
nn ′ →

⎧
⎨

⎩

√
ε
μ n = n

′

0 n �= n
′
.

(20)

Thus, at high frequencies the admittance matrix Y rad
ss ′ is diagonal

and equal to the free-space conductance as would be expected
when the radiation wavelength is much smaller than the aperture
size.

We have evaluated the elements of the radiation conductance
matrix as functions of frequency for a rectangular aperture with
dimensions L = 25 cm × W = 2 cm. Plots of these appear in
Figs. 3 and 4. For the diagonal elements, the conductance in-
creases nonmonotonically from zero, and asymptotes to its free-
space value. For the off-diagonal components (not shown), the
conductance first rises and then falls to zero with increasing
frequency. Combining numerical evaluations of the two con-
tributions in (9) yields the total susceptance. This is plotted
for several diagonal elements in Fig. 5, which have the feature
that for some elements the susceptance passes through zero at
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Fig. 5. Diagonal radiation susceptance for n = 1, . . . , 5, for a narrow aperture
L = 25 cm × W = 2 cm.

Fig. 6. Frequency behavior of the net power transmitted by an aperture A =
0.25 m ×0.02 m in free space, NA = 1, . . . , 7 modes, for an external plane
wave of hinc = 1 mA/m, at oblique incidence φ = 0, θ = π/4, and polarization
φp = π/2.

a particular frequency. At these frequencies, the conductances
(see Fig. 4) also tend to be small. This indicates the presence
of resonant modes of the aperture. At the frequencies of these
modes, the aperture will allow more power to pass through the
plane of the conductor than would expected based on the aper-
ture area. Our next step is to evaluate the power passing through
the aperture when it is illuminated by a plane wave. This involves
solving (17) for the vector of voltages V , and inserting these in
(18) for the power transmitted through the aperture. This will be
done a number of times; first with Y

=
> = Y

=
rad to determine the

power passing through the aperture in the radiation case; then
again with Y

=
> = Y

=
cav to determine the power through the aper-

ture when it is backed by a cavity. In the cavity case, a number
of realizations of the cavity admittance matrix will be consid-
ered, modeling cavities with different distributions of resonant
modes.

Fig. 6 shows the frequency behavior of the transmitted power
defined in (18), with Y

=
> = Y

=
rad, for an oblique plane wave

incident with angles φp = π/2, φ = 0, and θ = π/4, according
to the coordinate frame of Fig. 2. In Fig. 6, the net power is
parameterized by the number of aperture modes included in the
calculation, ranging from NA = 1 to NA = 7. As expected, the
higher the frequency the greater the number of modes required
to achieve an accurate prediction of the transmitted power. In-
terestingly, we notice the presence of a sharp peak at 600 MHz,
which is the slit resonance frequency, i.e., fA = c/(2L), and
other broader resonances located at n fA . At normal incidence,
the peak of the resonance next to the sharp peak is reduced of
a factor of 10. This is confirmed in previous studies based on
the transmission line model of a narrow aperture [36]. Having
computed the radiation conductance and susceptance for a nar-
row slit of dimensions 25 cm × 2 cm, we can investigate the
effect of a wave-chaotic cavity backing the aperture by replacing
Y
=

rad by Y
=

cav and exploiting the statistical model, (11). We first

calculate distributions of the cavity admittance elements from
the RCM by using a Monte Carlo technique and the radiation
admittance of a rectangular aperture. Numerical calculations of
(4) and Monte Carlo simulation of (12) allow for generating
an ensemble of cavity admittances of the form (11). In par-
ticular, we use the statistical method described in [5] and [6],
with N = 7 aperture modes, M = 600 cavity modes, and a loss
factor of α = 6, simulating a chaotic cavity with high losses,
to create the bare fluctuation matrix (12). Here, we repeat the
simulation of (12) 800 times to create an ensemble of fluctua-
tion matrices. By virtue of its construction, the average cavity
admittance equals the radiation matrix 〈Y

=
cav〉 = Y

=
rad. Further,

in the high-loss limit (α 
 1) fluctuations in the cavity matrix
become small and Y

=
cav → Y

=
rad. For finite losses, the character

of the fluctuations in the elements of the cavity admittance ma-
trix changes from Lorenzian at low loss (α � 1) to Gaussian at
high loss (α 
 1).

We now consider the net power coupled through an aperture
that is backed by a wave-chaotic cavity. This involves evalu-
ating (17) and (18) with Y

=
> = Y

=
cav and with Y

=
cav evaluated

according to (11). When this is done, the frequency dependence
of the net power acquires structure that is dependent on the
density of modes in the cavity. This is illustrated in Figs. 7 and
8, where net power through the 0.25 m by 0.02 m rectangu-
lar aperture is plotted versus frequency in the range 1.0 < f <
1.2 GHz for a few realizations of the fluctuating admittance
matrix. In both cases, the reference frequency in (13) is set at
fref = ωref/(2π) = 1.1 GHz, and the mean spacing between
modes is set to be Δf = Δω/(2π) = 10 MHz. Fig. 7 corre-
sponds to a moderate loss case (α = 1.0), and Fig. 8 to a low-
loss case (α = 0.1). Clearly, in the low-loss case the peaks in
power associated with different resonances are more distinct and
extend to higher power. Also, plotted in Figs. 7 and 8 are the
average over 800 realizations of the power coupled into the cav-
ity and the power coupled through the aperture in the radiation
case. Notice that both of these curves are smooth functions of
frequency and that in the moderate loss case of Fig. 7 the power
averaged over many realizations < Pcav > is only slightly less
than the transmitted power in the radiation case. In the low-loss
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Fig. 7. Comparison between the radiation (red dashed line), and the average
(red squares) net power transmitted by an aperture of dimensions A = 0.25 m
×0.02 m, in the frequency range from 1 to 1.2 GHz for an external incidence of
hinc = 1 A/m, direction of incidence φ = 0, θ = π/4, polarization φp = π/2.
Thin solid (black), dashed (blue), and dash-dotted (purple) lines are reported to
show three independent cavity realizations as generated through a Monte Carlo
method. The thick solid (red) line indicates the ensemble average of the port
power over 800 cavity realizations. The thick dashed (red) line indicates the
power radiated from the aperture in free space. Each cavity response is given
by the superposition of 600 ergodic eigenmodes. The chaotic cavity is modeled
with α = 1.0.

Fig. 8. Comparison between the radiation (red dashed line), and the average
(red squares) net power transmitted by an aperture of dimensions A = 0.25 m
×0.02 m, in the frequency range from 1 to 1.2 GHz for an external incidence of
hinc = 1 A/m, direction of incidence φ = 0, θ = π/4, polarization φp = π/2.
Thin solid (black), dashed (blue), and dash-dotted (purple) lines are reported to
show three independent cavity realizations as generated through a Monte Carlo
method. The thick solid (red) line indicates the ensemble average of the port
power over 800 cavity realizations. The thick dashed (red) line indicates the
power radiated from the aperture in free space. Each cavity response is given
by the superposition of 600 ergodic eigenmodes. The chaotic cavity is modeled
with α = 0.1.

case of Fig. 8, the average power coupled into the cavity is about
half the value of the radiation case.

The features of the coupled power in Figs. 7 and 8 can be
captured by a simple model. We consider the frequency range
in Fig. 6, where the resonances in the aperture are isolated,
roughly speaking f < 3 GHz. In this case, in a given narrow
frequency range the aperture fields are dominated by a single

mode, and we can replace the matrix (15)–(18) with their scalar
versions, yielding

Pt = 2 |I inc|2 �
{

Y >

|Y rad + Y > |2
}

(21)

where Y > = Y rad or Y cav depending on whether a cavity is
present, Y rad = iBrad + Grad and Y cav = iBrad + Gradξ with

ξ =
i

π

∑

n ′

w2
n ′

K0 −Kn ′ + iα
. (22)

Here, K0 , Kn ′ , and α are defined as before following (12) and
the wn ′ is a set of independent and identically distributed Gaus-
sian random variables with zero mean and unit variance. The
quantities Brad and Grad are properties of the aperture, and will
be discussed later.

The power transmitted through the aperture in the absence of
a cavity is given by

Pt =
|I inc|2

2
Grad

|Grad + iBrad |2
. (23)

The aperture resonance occurs at a frequency ωA , where
Brad (ωA ) = 0, corresponding to a peak in Fig. 6, and the
coupled power at the peak is PA = Pt (ωA ) = |I inc|2 /(2Grad),
with Grad = Grad(ωA ). We can then express the frequency de-
pendence of the power coupled through the aperture for fre-
quencies near ωA in the form of a Lorenzian resonance function

Pt (ω) =
PA

1 + Δ2
A

(24)

where

ΔA =
2QA (ω − ωA )

ωA
(25)

and the effective quality factor for the aperture is given by

QA =
ωA

2Grad (ωA )
dBrad

dω

∣∣∣∣
ωA

. (26)

When a cavity backs the aperture, Y > = Y cav becomes a ran-
dom frequency-dependent function through the variable ξ (ω).
This quantity is frequency dependent through the denominators
in (22) and is random due to the random vectors of coupling
coefficients wn and eigenvalues Kn . The frequency scale for
variation of ξ (ω) is determined by the frequency spacing of
modes of the cavity. In the typical case, the frequency spacing
of cavity modes is much smaller than that of aperture modes,
as depicted in Figs. 7 and 8. The behavior of the coupled power
as a function of frequency will, thus, follow the envelope of the
radiation case, with fluctuations on the frequency scale of the
separation between cavity modes.

This behavior can be captured in the simple mode if we
assume the frequency is close to one of the poles (n

′
= n) of

(22). Specifically, we write

ξ = ib +
i w2

n

π (K0 −Kn + iα)
(27)

where the term ib is in the form of (22) with the n
′
= n term

removed and K0 = Kn . Since α is assumed to be small it can



GRADONI et al.: STATISTICAL MODEL FOR THE EXCITATION OF CAVITIES THROUGH APERTURES 1055

be neglected in b (making b purely real), whereas it is retained
in the second term in (27) since we consider frequencies such
that K0 −Kn is small and comparable to α. The statistical
properties of the sum given by b were detailed by Hart et al.
[37]. If we express b in the form b = tan ψ, then the PDF of ψ
is cos ψ/2 [37]. For now, since we are focusing on the behavior
of individual realizations, we leave the value of b unspecified.

Having assumed the cavity response is dominated by a single
resonance, we can manipulate (21) into a general form

Pt (ω) = PA
4ααA

|K0 −K′
n + i (α + αA )|2

(28)

where K′
n = Kn − 2Δ

′
αA , Δ

′
= ΔA + b/2, and

αA =
w2

n

π |1 + 2iΔ′ |2
. (29)

Here, the variables have the following interpretations: αA is
the “external” loss factor describing the damping of the cav-
ity mode due to the aperture. Note, it is added to the internal
loss factor α in the denominator of (28). It is a statistical quan-
tity, mainly through the Gaussian random variables wn . This is
responsible for variation in the height of the peaks in Fig. 8.
The quantity Δ

′
= ΔA + b/2 represents the modification of the

aperture resonance function (25) by the reactive fields of the
nonresonant cavity modes (b/2). Note that it affects the external
damping factor αA , which is largest when Δ

′
= 0, i.e., when ω

is near the aperture resonant frequency. Finally, K′
n determines

the shifted cavity mode frequency. That is, using definition (13)
the resonant cavity mode frequency, K0 = K′

n , becomes

ω = ωn − 2ΔωΔ
′
αA . (30)

Equation (28) implies that the power coupled into the cavity
at frequency ω is bounded above by the power that can be
transmitted through the aperture at the aperture resonance ωA .
These powers are equal Pt (ω) = PA if the mode is resonant,
K0 = K′

n , and the cavity is critically coupled, α = αA . Note,
however, that the coupled power in the cavity case (28) can
exceed the radiation case (24) at the same frequencies if the
aperture is off resonance Δ

′
(ω) �= 0. This is evident at the peaks

of the coupled power in Fig. 8. Basically, what is happening is
the cavity susceptance, which alternates in sign as frequency
varies on the scale of the cavity modes, cancels the aperture
susceptance, thus making the aperture resonant for frequencies
away from the natural resonance ωA .

When the cavity loss parameter is small as in Fig. 8 or (28)
there are large variations in coupled power as frequency is var-
ied. A broad band signal would average over these variations.
We can treat this case by computing the power coupled through
the aperture averaged over realizations of the random variable
ξ defined in (22). Such averages are shown in Figs. 7 and 8
based on Monte Carlo evaluations of the full system (18). We
perform this average in our simple model. A plot of a numerical
evaluation of < Pt > /PA from (28) as a function of Δ

′
for

different loss parameters α appears in Fig. 9. Interestingly, a
loss parameter that is as large as α = 1 is sufficient to make the
average power entering a cavity 90% of that passing through an
unbacked aperture.

Fig. 9. Universal aperture factor on ΔA , parameterized by α.

IV. CAVITY WITH BOTH PORTS AND APERTURES

In the previous section, we determined the properties of the
power entering a cavity through an aperture. The contents of
the cavity were treated as a distributed loss characterized by a
single parameter α. We will now extend this model to treat the
case in which we identify a second port to the cavity that we
will treat as an electrically small antenna. This port could be
an actual port, where a connection is made to the outside world
as illustrated in Fig. 1, or the port could represent the pin of a
circuit element on which the voltage is of interest.

We consider the configuration of Fig. 1, where we have the
joint presence of apertures and ports. We have previously con-
sidered the case of fields excited by a current distribution of the
form [38]

J (x) =
∑

p

up (x) Ip , (31)

where up (x) is a set of basis functions used to represent the
current distribution in terms of a set of amplitudes Ip , which
we call the port currents. The corresponding port voltages were
defined in [38] as

Vp = −
∫

d3xup (x) · E (x) (32)

and as a result the power entering the cavity through the ports

is PP = �
{∑

p V ∗
p Ip

}
/2.

In analogy to our treatment of the aperture, we consider two
cases: one in which the current distribution radiates into free
space and one in which the current distribution radiates into a
cavity. The linear relationship between the port voltages Vp and
the port currents Ip is then characterized by impedance matrices
Zrad

pp ′ and Zcav
pp ′ depending on the case under consideration, where

Vp =
∑

p ′

Z rad/cav
pp ′ Ip ′ . (33)

For the radiation case, it was shown [38]

Zrad
pp ′ (k0 = ω/c) =

√
μ

ε

∫
d3k

(2π)3
ik0

k2
0 − k2 ũp · Δ

= Z
· ũ∗

p ′

(34)
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where ũp (k) is the Fourier transform of the basis function
up (x), k0 = ω/c, and the dyadic Δ

= Z
is given by

Δ
= Z

=
1k2 − kk

k2 +
kk

k2k2
0

(
k2

0 − k2) . (35)

The radiation impedance matrix can be decomposed Zrad
pp ′ =

Rrad
pp ′ + iXrad

pp ′ , where Rrad
pp ′ is the residue from the pole at k = k0

in (34) (the radiation resistance)

Rrad
pp ′ (k0) = �

(
Zrad

pp ′

)
=
√

μ

ε

∫
k2

0dΩk

16π2 ũ∗
p · 1k2 − kk

k2 · ũ∗
p ′

(36)
and Xrad

pp ′ is the reactive contribution.
For the cavity case, it was shown

Z
=

cav = i�
{

Z
=

rad
}

+
[
R
=

rad
]1/2

· ξ
=
·
[
R
=

rad
]1/2

(37)

where the fluctuating matrix ξ
=

is defined in (12).

We are now in a position to describe a statistical model for a
cavity including both an aperture and a localized current distri-
bution. In this case, we construct an input column vector φ that
consists of the aperture voltages and port currents and an output
vector ψ that consists of the aperture currents and port voltages

φ =

[
V A

IP

]
(38)

and

ψ =

[
IA

V P

]
(39)

where V A,P are the aperture and port voltages, and IA,P are the
aperture and port currents. These are then related by a hybrid
matrix T

=
, ψ = T

=
· φ, where

T
=

= i Im

(
U
=

)
+
[
V
=

]1/2

· ξ
=
·
[
V
=

]1/2

. (40)

Here, the matrices U
=

and V
=

are block diagonal, viz.,

U
=

=

⎡

⎣
Y
=

rad 0

0 Z
=

rad

⎤

⎦ (41)

and V
=

= �
[
U
=

]
. The dimension of U

=
and V

=
is (Ns + Np) ×

(Ns + Np), where Np is the number of port currents and Ns

is the number of aperture voltages. Here, we have assumed
that the ports and apertures are sufficiently separated such that
the off-diagonal terms in U

=
, describing the direct excitation

of port voltages by aperture voltages, and aperture currents by
port currents, are approximately zero. This assumption can be
released in case of direct illumination between, or proximity of,
aperture and port through the short-orbit correction of the RCM,
which in this setting needs to be extended to cope with vector
EM fields [37], [39]. In the simples case, we can take the square

root of V
=

[
V
=

]1/2

=

⎡

⎢⎢⎢⎣

[
G
=

rad
]1/2

0

0
[
R
=

rad
]1/2

⎤

⎥⎥⎥⎦ . (42)

At this point, we specialize consideration to the case of a port
that is an electrically small antenna characterized by a single
current Ip and single basis function in (31). The matrices T

=
,

U
=

, and V
=

then have dimension (NA + 1) × (NA + 1) and the

matrix relations for the voltages and currents are more clearly
expressed when separated into NA aperture equations and one
port equation. For the aperture equations, we find that (15) is
replaced by
(

Y
=

cav +Y
=

rad
)
· V A +

[
G
=

rad
]1/2

· ξ
AP

·
(
Rrad)1/2

Ip = 2I inc.

(43)
For the port, we assume the small antenna drives a load with
impedance ZL such that Vp = −ZLIp . Then, the port equation
becomes

(ZL + Zcav ) Ip +
(
Rrad)1/2

ξT
AP

·
[
G
=

rad
]1/2

· V A = 0

(44)
where ξ

AP
is a column vector defined similarly to the NA × NA

matrix ξ in (12). Finally, the scalar cavity impedance is defined
in accord with (37)

Zcav = iXrad + Rradξ (45)

with ξ being a scalar version of the fluctuation matrix. If we
assume the aperture voltages are known, (44) can be solved for
the current in the port

Ip = − (ZL + Zcav )−1 (Rrad)1/2
ξT

AP
·
[
Grad]1/2 · V A .

(46)
Substituting the expression for the port current into the aperture
(43) yields an equation of the form of (15) for the aperture
voltages

(
Y
=

rad + Y
=

cav′
)
· V A = 2I inc . (47)

Here, the modified cavity admittance

Y
=

cav′ =Y
=

cav− Rrad

(ZL + Zcav )

[
G
=

rad
]1/2

· ξ
AP

· ξT
AP

·
[
G
=

rad
]1/2

(48)
includes the effect of the current induced in the port antenna on
the magnetic fields at the aperture. In the high-loss limit (α > 1)
or if the antenna load impedance is large this last term is small,
Y
=

cav′ ≈ Y
=

cav , and the amount of power coupled through the

aperture is unaffected by the presence of the antenna. Once
(47) is inverted to find the aperture voltages V A (48) can be
used to find the current induced in the antenna, and the relation
Vp = −ZLIp can be used to find the port voltage. The power
dissipated in the load is then PL = RL |Ip |2 /2.
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We first consider the statistical properties of the fluctuating
port voltage Vp in the high-loss limit. As mentioned, in this
case Y

=
cav ′ ≈ Y

=
cav , and further Y

=
cav ≈ Y

=
rad . Thus, the aper-

ture voltages V A determined by (47) will be the same as those
determined in the radiation case of (17) and the power coupled
into the cavity will have the character displayed in Fig. 6. Sta-
tistical variations in the port current are then determined by the
column vector ξ

AP
in (46). (In the high-loss limit, variations in

Zcav become small, and we can replace Zcav with Zrad for the
port antenna.)

The statistical properties of the elements of ξT
AP

are the same
as those of the off-diagonal elements of the general matrix ξ

=
de-

fined in (12). In the limit of high loss, the elements are complex,
with independent real and imaginary parts, each of which are
zero mean independent Gaussian random variables [5], [6]. The
common variance for the real and imaginary parts is (2πα)−1 .
Since according to (46) the port current Ip is a linear super-
position of Gaussian random variables, it too has independent
real and imaginary parts that are zero mean Gaussian random
variables. What remains then is to calculate its variance. Specif-
ically, we find

〈|Ip |2〉 =
Rrad

|ZL + Zrad |2
1

πα
V ∗

A · G
=

rad · V A . (49)

Similar arguments determine the statistics of the port voltage.
Since the port voltage and current are complex with independent
Gaussian distributed real and imaginary parts, their magnitudes
will be Rayleigh distributed with a mean determined by (49).
Finally, we calculate the expected power coupled to the load
〈PL 〉 = RL 〈|Ip |2〉/2

〈PL 〉 =
RLRrad

|ZL + Zrad |2
1

2πα
Pt (50)

where Pt is the power transmitted through the aperture in the
radiation case. We note that the ratio of the power coupled to
the load and the power entering the cavity satisfies a relation
identical to what we found previously for the case of localized
ports [40].

The numerical computation of the exact expressions (46)–
(48) is now carried out. We now describe numerical solutions
of the coupled port and aperture (43)–(47). Elements of the
matrix ξ

=
, (12), vector ξ

AP
, and scalar ξ were generated using

the same Monte Carlo algorithm used to produce Figs. 7 and
8. Specifically, we generated 800 realizations each with 600
modes. The cavity was excited through a narrow aperture of
dimensions L = 0.25 m ×W = 0.02 m, by a plane wave with
amplitude |hinc| = 1 mA/m, direction of incidence θ = 0, and
ψ = π/2, with polarization φ = π/2, and with frequency swept
from 1 to 1.2 GHz. The receiving port was an antenna with free-
space impedance Zrad = 30 − j20 Ω terminated by a ZL =
50 Ω load. Figs. 10 and 11 show the power coupled to the load
for the case of loss factor α = 1.0 and α = 0.1, respectively. As
in the cases of the power coupled into the cavity, Figs. 7 and 8,
the power to the load for individual realizations shows variations
with frequency, which are more pronounced in the low-loss case
than in the moderate loss case. Figs. 10 and 11 also display

Fig. 10. Port power received by an antenna in the frequency range from 1
to 1.2 GHz. The cavity is highly irregular and overmoded, with loss factor of
α = 1.0. The aperture is of dimensions L = 0.25 m ×W = 0.02 m, and the
external plane wave we assumed has amplitude |hinc| = 1 mA/m, and direction
of incidence θ = π/4, ψ = 0, and φ = 0. Thin solid (black), dashed (blue), and
dash-dotted (purple) lines indicate the port power for three independent cavity
realizations, while the thick solid (red) line indicates the ensemble average of
the port power over 800 cavity realizations. Each cavity response is given by
the superposition of 600 ergodic eigenmodes.

Fig. 11. Port power received by an antenna in the frequency range from 1
to 1.2 GHz. The cavity is highly irregular and overmoded, with loss factor of
α = 0.1. The aperture is of dimensions L = 0.25 m ×W = 0.02 m, and the
external planewave we assumed has amplitude |hinc| = 1 mA/m, and direction
of incidence θ = π/4, ψ = 0, and φ = 0. Thin solid (black), dashed (blue), and
dash-dotted (purple) lines indicate the port power for three independent cavity
realizations, while the thick solid (red) line indicates the ensemble average of
the port power over 800 cavity realizations. Each cavity response is given by
the superposition of 600 ergodic eigenmodes.

the power to the load averaged over the 800 realizations. The
amount of power reaching the load is generally in agreement
with (50). From Figs. 7 and 8, we see that the average power
entering the cavity at 1.1 GHz is 1.6 × 10−6 and 0.6 × 10−6 W
in the α = 1.0 and α = 0.1 cases, respectively. Equation (50)
then predicts for the power reaching the load 0.5 × 10−7 and
2.1 × 10−7 W in these cases. Note that more power enters the
cavity in the higher loss case, but more power reaches the load
in the lower loss case. In the low-loss limit, we can develop a
formula analogous to (28). We assume the elements of the ξ

=
matrix are dominated by a single cavity mode, and make the
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same approximations as the one leading to (28). The results for
the power coupled to the load is found to be

PL (ω) = PA
4αAαP

|K0 −K′′
n + i (α + αA + αP )|2

(51)

where PA is the power coupled through the aperture at reso-
nance, αA is the aperture loss factor defined in (29), αP is an
analogously defined loss factor for the port

αP =
RLRradw2

P

π |ZL + i (Xrad + RradbP )|2
(52)

and K0 = K′′
n determines the shifted resonant frequency of

mode-n, where

K′′

n = Kn − 2δ
′
αA − αP

(
Xrad + XL + RradbP

)
/RL .

(53)
In (51), the statistically fluctuating quantities αP and αA deter-
mine the peak power at resonance reaching the antenna. In the
low-loss case considered here, the peak power delivered to the
load can be a substantial fraction of the power passing through
the aperture at the aperture resonance, PA .

V. CONCLUSION

We have developed a statistical model of the coupling of
EM power through an aperture into a wave chaotic cavity. The
formulation combines the deterministic, and system specific
elements of the aperture and a receiving antenna in the cavity,
with a statistical model for the modes of the cavity. Particular
attention has been focused on the case of a rectangular aperture,
which has a set of well-separated resonances. Power coupled
through an aperture into free space has peaks at frequencies
corresponding to the modes of the aperture. When the aperture
is backed by a cavity a new set of peaks appears at frequencies
of modes of the cavity. These peaks can be as large as the free-
space aperture resonance peaks. Simple formulas are derived
that augment the detailed formulation, and that apply in the
high-loss, low-loss, isolated resonance limit. These results are
of interest for studying the coupling of an external radiation
through apertures in complex cavities, such as RCs, and for
practical scenarios of slotted enclosures populated by materials
and electronic circuitry.

APPENDIX

The admittance of a cavity excited through an aperture can
be expressed by expanding the fields inside the cavity in a basis
of electric and magnetic modes

E =
∑

n

V em
n eem

n (x) (54)

and

H =
∑

n

(Iem
n hem

n (x) + Ims
n hms

n (x)) . (55)

Here, the EM modes satisfy the pair of equations, −ikneem
n =

∇× hem
n , and iknhem

n = ∇× eem
n with the tangential compo-

nents of the electric field equal to zero on the cavity boundary
including the aperture. The magnetostatic modes are irrotational

hms
n = −∇χn , where the potential satisfies the Helmholtz equa-

tion
(
∇2 + k2

n

)
χn = 0, with Neumann boundary conditions,

|n̂ · ∇χn |B = 0. The magnetostatic modes are needed to repre-
sent magnetic fields that have nonvanishing normal components
at the aperture [41]. It can be shown that all the magnetic field
modes are orthogonal.

The mode amplitudes are determined by projecting Maxwellś
equations onto the basis functions for each field type. The result
of this action is an expression for the magnetic field amplitudes
in the aperture that is equivalent to (3) except that the radiation
admittance matrix is replaced by a cavity admittance matrix

Y cav
ss ′ (k0) =

√
ε

μ

∑

n

(
ik0

k2
0 − k2

n

wem
snwem

s ′n

V em
+

i

k0

wms
snwms

s ′n

V ms

)

(56)
where

w(·)
sn =

∫

aperture
dx⊥ es (x⊥) · ẑ × h(·)

n (57)

is the projection of the magnetic field of the cavity mode onto
the aperture field profile and

V (·) =
∫

dx
∣∣∣h(·)

n

∣∣∣
2

(58)

is a normalization factor for the eigenfunctions.
Expression (56) is general and gives an exact expression for

the admittance matrix of a lossless cavity in terms of the cavity
modes. If we apply the random coupling hypothesis, we replace
the exact eigenmodes with modes corresponding to random su-
perpositions of plane waves. Specifically, near the plane z = 0
we write for the components of the EM eigenmodes transverse
to the z direction

hem
n⊥ = lim

N →∞

2√
N

N∑

j=1

bj⊥ cos (kj · n̂z) cos (θj + kj · x⊥)

(59)
where θj are uniformly distributed in the interval [0, 2π],
|kj | = kn , with the direction of kj uniformly distributed over
the half solid angle corresponding to kj · n̂ > 0, |bj | = 1, with
bj uniformly distributed in angle in the plane perpendicular to
kj . Except as mentioned, all random variables characterizing
each plane wave are independent. A similar expression can be
made for the scalar potential χn generating the magnetostatic
modes. With eigenfunctions expressed as a superposition of ran-
dom plane waves, each factor wsn ( ·) appearing in (56) becomes
a zero mean Gaussian random variable. The correlation matrix
between two such factors can then be evaluated by forming the
product of two terms, averaging over the random variables pa-
rameterizing the eigenfunctions and taking the limit N → ∞.
We find for the EM modes the following expectation value:
〈

w
(em)
sn w

(em)
s ′n

V em

〉
=
∫

dΩk

4πV
ẽ∗s

·
[
k⊥k⊥
k2
⊥

+

(
k2
‖

k2

)
(k × n̂) (k × n̂)

k2
⊥

]
· ẽs ′ .

(60)
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Here, |k| = kn , Ωn represents the spherical solid angle of k,
and V is the volume of the cavity. A similar analysis of the
magnetostatic modes gives

〈
w

(ms)
sn w

(ms)
s ′n

V ms

〉
=
∫

dΩk

2πV
ẽ∗s ·

[(
k2
⊥

k2

)
(k × n̂) (k × n̂)

k2
⊥

]
· ẽs ′ .

(61)
The connection between the cavity case (56) and the radia-
tion case (4) is now apparent. Specifically, we note that the
factors w

(em)
sn are zero mean Gaussian random variables with

a correlation matrix given by (60). We can express the prod-
uct w

(em)
sn w

(em)
s ′n

in terms of uncorrelated zero mean, unit width
Gaussian random variables by diagonalizing the correlation ma-
trix. We again introduce matrix notation and represent the ss

′

element of the product

w
(em)
sn w

(em)
s ′n

V em
= 2

√
ε

μ
Δkn

{[
G
=

rad,∗
]1/2

· wnwT
n ·

[
G
=

rad
]1/2

}

ss ′

(62)

where G
=

rad is the radiation admittance matrix (7), and Δkn =

π2/(k2
nV ) is the mean separation between resonant wave num-

bers for EM modes on a cavity of volume V . By substituting
(60) into (56), we have

Y cav
ss ′ =

{
∑

n

2ik0Δkn

π (k2
0 − k2

n )

[
G
=

rad
]1/2

· wnwT
n ·

[
G
=

rad
]1/2

}

ss ′

+ Bms
ss ′ (k0) (63)

where in the limit of a large cavity we have approximated the
sum of the pairs of Gaussian random variables representing
the magnetostatic contribution to the cavity admittance by their
average values and using Δkn = 2π2/

(
V k2

n

)
for magnetostatic

modes converted the sum to an integral

√
ε

μ

∑

n

i

k0

w
(ms)
sn w

(ms)
s ′n

V ms
≈

√
ε

μ

∑

n

i

k0

〈
w

(ms)
sn w

(ms)
s ′n

V ms

〉

=
∑

n

2i

k0

√
ε

μ

∫
k2

nΔkndΩk

(2π)3

ẽ∗s ·
(kn⊥ × n̂) (kn⊥ × n̂)

k2
n

·ẽs ′ ≈ iBms
ss ′ (k0) . (64)

Equation (63) is the random coupling model prediction for the
cavity admittance. The last steps are to replace the exact spec-
trum of eigenvalues, k2

n by a spectrum produced by RMT and
to insert a loss term. We introduce a reference wave frequency
and associated wave number ωref = kref c, and we assume that
the cavity is filled with a uniform dielectric with loss tan-
gent tδ = εi/εr . Under these assumptions for frequencies close
to the reference frequency, the frequency-dependent fraction

appearing in (63) can be expressed as

2k0Δk

k2
0 − k2

n

= [K0 −Kn + iα]−1 (65)

where

K0 =
k2

0 − k2
ref

2k0Δk
≈ ω − ωref

Δω
(66)

measures the deviation in frequency from the reference fre-
quency, and Δω = Δkc is the mean spacing in resonant fre-
quencies. The resonant wave numbers are now represented as a
set of dimensionless values

Kn =
k2

n − k2
ref

2k0Δk
(67)

which by their definition have mean spacing of unity. These are
then taken to be the eigenvalues of a random matrix from the
GOE normalized to have mean spacing unity. Finally, the loss
factor α is defined to be

α =
1
2
tδ

k0

Δk
. (68)

We note that the zeros of the denominator are given by k0 =
kn − iα, which implies � (ω) = −αΔω = −ω0/(2Q). Thus,
α = ω0/(2QΔω ). This results in an expression analogous to
those obtained in [5], [6], and [38] for the impedance matrix

Y
=

cav = i Im

{
Y
=

rad
}

+
[
G
=

rad
]1/2

· ξ
=
·
[
G
=

rad
]1/2

. (69)

Thus, we have seen that in cases of ports described by planar
apertures, we can express the model cavity admittance in terms
of the corresponding radiation impedance or admittance and a
universal statistical matrix ξ

=
.
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